В эксперименте симметричную монету бросают дважды. В случайном эксперименте симметричную монету бросают дважды

В теории вероятностей существует группа задач, для решения которых достаточно знать классическое определение вероятности и наглядно представлять предлагаемую ситуацию. Такими задачами является большинство задач с подбрасыванием монеты и задачи с бросанием игрального кубика. Напомним классическое определение вероятности.

Вероятность события А (объективная возможность наступления события в числовом выражении) равна отношению числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов: Р(А)=m/n , где:

  • m – число элементарных исходов испытания, благоприятствующих появлению события А;
  • n – общее число всех возможных элементарных исходов испытания.

Число возможных элементарных исходов испытания и число благоприятных исходов в рассматриваемых задачах удобно определять перебором всех возможных вариантов (комбинаций) и непосредственным подсчетом.

Из таблицы видим, что число возможных элементарных исходов n=4. Благоприятные исходы события А = {орел выпадает 1 раз} соответствуют варианту №2 и №3 эксперимента, таких вариантов два m=2.
Находим вероятность события Р(А)=m/n=2/4=0,5

Задача 2 . В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел не выпадет ни разу.

Решение . Поскольку монету бросают дважды, то, как и в задаче 1, число возможных элементарных исходов n=4. Благоприятные исходы события А = {орел не выпадет ни разу} соответствуют варианту №4 эксперимента (см. таблицу в задаче 1). Такой вариант один, значит m=1.
Находим вероятность события Р(А)=m/n=1/4=0,25

Задача 3 . В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орёл выпадет ровно 2 раза.

Решение . Возможные варианты трех бросаний монеты (все возможные комбинации орлов и решек) представим в виде таблицы:

Из таблицы видим, что число возможных элементарных исходов n=8. Благоприятные исходы события А = {орел выпадает 2 раза} соответствуют вариантам №5, 6 и 7 эксперимента. Таких вариантов три, значит m=3.
Находим вероятность события Р(А)=m/n=3/8=0,375

Задача 4 . В случайном эксперименте симметричную монету бросают четыре раза. Найдите вероятность того, что орёл выпадет ровно 3 раза.

Решение . Возможные варианты четырех бросаний монеты (все возможные комбинации орлов и решек) представим в виде таблицы:

№ варианта 1-й бросок 2-й бросок 3-й бросок 4-й бросок № варианта 1-й бросок 2-й бросок 3-й бросок 4-й бросок
1 Орел Орел Орел Орел 9 Решка Орел Решка Орел
2 Орел Решка Решка Решка 10 Орел Решка Орел Решка
3 Решка Орел Решка Решка 11 Орел Решка Решка Орел
4 Решка Решка Орел Решка 12 Орел Орел Орел Решка
5 Решка Решка Решка Орел 13 Решка Орел Орел Орел
6 Орел Орел Решка Решка 14 Орел Решка Орел Орел
7 Решка Орел Орел Решка 15 Орел Орел Решка Орел
8 Решка Решка Орел Орел 16 Решка Решка Решка Решка

Из таблицы видим, что число возможных элементарных исходов n=16. Благоприятные исходы события А = {орел выпадет 3 раза} соответствуют вариантам №12, 13, 14 и 15 эксперимента, значит m=4.
Находим вероятность события Р(А)=m/n=4/16=0,25

Определение вероятности в задачах про игральную кость

Задача 5 . Определите вероятность того, что при бросании игрального кубика (правильной кости) выпадет более 3 очков.

Решение . При бросании игрального кубика (правильной кости) может выпасть любая из шести его граней, т.е. произойти любое из элементарных событий - выпадение от 1 до 6 точек (очков). Значит число возможных элементарных исходов n=6.
Событие А = {выпало более 3 очков} означает, что выпало 4, 5 или 6 точек (очков). Значит число благоприятных исходов m=3.
Вероятность события Р(А)=m/n=3/6=0,5

Задача 6 . Определите вероятность того, что при бросании игрального кубика выпало число очков, не большее 4. Результат округлите до тысячных.

Решение . При бросании игрального кубика может выпасть любая из шести его граней, т.е. произойти любое из элементарных событий - выпадение от 1 до 6 точек (очков). Значит число возможных элементарных исходов n=6.
Событие А = {выпало не более 4 очков} означает, что выпало 4, 3, 2 или 1 точка (очко). Значит число благоприятных исходов m=4.
Вероятность события Р(А)=m/n=4/6=0,6666…≈0,667

Задача 7 . Игральную кость бросают дважды. Найдите вероятность того, что оба раза выпало число, меньшее 4.

Решение . Так как игральную кость (игральный кубик) бросают дважды, то будем рассуждать следующим образом: если на первом кубике выпало одно очко, то на втором может выпасть 1, 2, 3, 4, 5, 6. Получаем пары (1;1), (1;2), (1;3), (1;4), (1;5), (1;6) и так с каждой гранью. Все случаи представим в виде таблицы из 6-ти строк и 6-ти столбцов:

1; 1 2; 1 3; 1 4; 1 5; 1 6; 1
1; 2 2; 2 3; 2 4; 2 5; 2 6; 2
1; 3 2; 3 3; 3 4; 3 5; 3 6; 3
1; 4 2; 4 3; 4 4; 4 5; 4 6; 4
1; 5 2; 5 3; 5 4; 5 5; 5 6; 5
1; 6 2; 6 3; 6 4; 6 5; 6 6; 6


Благоприятные исходы события А = {оба раза выпало число, меньшее 4} (они выделены жирным) подсчитаем и получим m=9.
Находим вероятность события Р(А)=m/n=9/36=0,25

Задача 8 . Игральную кость бросают дважды. Найдите вероятность того, что наибольшее из двух выпавших чисел равно 5. Ответ округлите до тысячных.

Решение . Все возможные исходы двух бросаний игральной кости представим в таблице:

1; 1 2; 1 3; 1 4; 1 5; 1 6; 1
1; 2 2; 2 3; 2 4; 2 5; 2 6; 2
1; 3 2; 3 3; 3 4; 3 5; 3 6; 3
1; 4 2; 4 3; 4 4; 4 5; 4 6; 4
1; 5 2; 5 3; 5 4; 5 5; 5 6; 5
1; 6 2; 6 3; 6 4; 6 5; 6 6; 6

Из таблицы видим, что число возможных элементарных исходов n=6*6=36.
Благоприятные исходы события А = {наибольшее из двух выпавших чисел равно 5} (они выделены жирным) подсчитаем и получим m=8.
Находим вероятность события Р(А)=m/n=8/36=0,2222…≈0,222

Задача 9 . Игральную кость бросают дважды. Найдите вероятность того, что хотя бы раз выпало число, меньшее 4.

Решение . Все возможные исходы двух бросаний игральной кости представим в таблице:

1; 1 2; 1 3; 1 4; 1 5; 1 6; 1
1; 2 2; 2 3; 2 4; 2 5; 2 6; 2
1; 3 2; 3 3; 3 4; 3 5; 3 6; 3
1; 4 2; 4 3; 4 4; 4 5; 4 6; 4
1; 5 2; 5 3; 5 4; 5 5; 5 6; 5
1; 6 2; 6 3; 6 4; 6 5; 6 6; 6

Из таблицы видим, что число возможных элементарных исходов n=6*6=36.
Фраза «хотя бы раз выпало число, меньшее 4» означает «число меньшее 4 выпало один раз или два раза», тогда число благоприятных исходов события А = {хотя бы раз выпало число, меньшее 4} (они выделены жирным) m=27.
Находим вероятность события Р(А)=m/n=27/36=0,75

В задачах по теории вероятностей, которые представлены в ЕГЭ номером №4, кроме , встречаются задачи на подбрасывание монеты и о бросках кубика. Их сегодня мы и разберем.

Задачи о подбрасывании монеты

Задача 1. Симметричную монету бросают дважды. Найдите вероятность того, что решка выпадет ровно один раз.

В таких задачах удобно выписать все возможные исходы, записывая их при помощи букв Р (решка) и О (орел). Так, исход ОР означает, что при первом броске выпал орел, а при втором – решка. В рассматриваемой задаче возможны 4 исхода: РР, РО, ОР, ОО. Благоприятствуют событию «решка выпадет ровно один раз» 2 исхода: РО и ОР. Искомая вероятность равна .

Ответ: 0,5.

Задача 2. Симметричную монету бросают трижды, Найдите вероятность того, что орел выпадет ровно два раза.

Всего возможны 8 исходов: РРР, РРО, РОР, РОО, ОРР, ОРО, ООР, ООО. Благоприятствуют событию «орёл выпадет ровно два раза» 3 исхода: РОО, ОРО, ООР. Искомая вероятность равна .

Ответ: 0,375.

Задача 3. Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнет игру с мячом. Команда «Изумруд» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Изумруд» выиграет жребий ровно один раз.

Эта задача аналогична предыдущей. Пусть каждый раз выпадение решки означает выигрыш жребия «Изумрудом» (такое предположение не влияет на вычисление вероятностей). Тогда возможны 8 исходов: РРР, РРО, РОР, РОО, ОРР, ОРО, ООР, ООО. Благоприятствуют событию «решка выпадет ровно один раз» 3 исхода: РОО,ОРО,ООР. Искомая вероятность равна .

Ответ: 0,375.

Задача 4 . Симметричную монету бросают трижды. Найдите вероятность того, что наступит исход РОО (в первый раз выпадает решка, во второй и третий - орёл).

Как и в предыдущих задачах, здесь имеется 8 исходов: РРР, РРО, РОР, РОО, ОРР, ОРО, ООР, ООО. Вероятность наступления исхода РОО равна .

Ответ: 0,125.

Задачи о бросках кубика

Задача 5. Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию «сумма очков равна 8»?

Задача 6 . Одновременно бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 4 очка. Результат округлите до сотых.

Вообще, если бросают игральных костей (кубиков), то имеется равновозможных исходов. Столько же исходов получается, если один и тот же кубик бросают раз подряд.

Событию «в сумме выпало 4» благоприятствуют следующие исходы: 1 – 3, 2 – 2, 3 – 1. Их количество равно 3. Искомая вероятность равна .

Для подсчёта приближённого значения дроби удобно воспользоваться делением уголком. Таким образом, приблизительно равна 0,083…, округлив до сотых имеем 0,08.

Ответ: 0,08

Задача 7 . Одновременно бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 5 очков. Результат округлите до сотых.

Исходом будем считать тройку чисел: очки, выпавшие на первой, второй и третьей игральной кости. Всего имеется равновозможных исходов. Событию «в сумме выпало 5» благоприятствуют следующие исходы: 1–1–3, 1–3–1, 3–1–1, 1–2–2, 2–1–2, 2–2–1. Их количество равно 6. Искомая вероятность равна . Для подсчёта приближённого значения дроби удобно воспользоваться делением уголком. Приблизительно получаем 0,027…, округлив до сотых, имеем 0,03.Источник “Подготовка к ЕГЭ. Математика. Теория вероятностей”. Под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова

Задачи на подбрасывание монет считаются довольно сложными. И перед тем как решать их, требуется небольшое пояснение. Задумайтесь, любая задача по теории вероятностей в итоге сводится к стандартной формуле:

где p - искомая вероятность, k - число устраивающих нас событий, n - общее число возможных событий.

Большинство задач B6 решаются по этой формуле буквально в одну строчку - достаточно прочитать условие. Но в случае с подбрасыванием монет эта формула бесполезна, поскольку из текста таких задач вообще не понятно, чему равны числа k и n . В этом и состоит вся сложность.

Тем не менее, существует как минимум два принципиально различных метода решения:

  1. Метод перебора комбинаций - стандартный алгоритм. Выписываются все комбинации орлов и решек, после чего выбираются нужные;
  2. Специальная формула вероятности - стандартное определение вероятности, специально переписанное так, чтобы было удобно работать с монетами.

Для решения задачи B6 надо знать оба метода. К сожалению, в школах изучают только первый. Не будем повторять школьных ошибок. Итак, поехали!

Метод перебора комбинаций

Этот метод еще называется «решение напролом». Состоит из трех шагов:

  1. Выписываем все возможные комбинации орлов и решек. Например: ОР, РО, ОО, РР. Число таких комбинаций - это n ;
  2. Среди полученных комбинаций отмечаем те, которые требуются по условию задачи. Считаем отмеченные комбинации - получаем число k ;
  3. Осталось найти вероятность: p = k : n .

К сожалению, этот способ работает лишь для малого количества бросков. Потому что с каждым новым броском число комбинаций удваивается. Например, для 2 монет придется выписать всего 4 комбинации. Для 3 монет их уже 8, а для 4 - 16, и вероятность ошибки приближается к 100%. Взгляните на примеры - и сами все поймете:

Задача. В случайном эксперименте симметричную монету бросают 2 раза. Найдите вероятность того, что орлов и решек выпадет одинаковое количество.

Итак, монету бросают два раза. Выпишем все возможные комбинации (O - орел, P - решка):

Итого n = 4 варианта. Теперь выпишем те варианты, которые подходят по условию задачи:

Таких вариантов оказалось k = 2. Находим вероятность:

Задача. Монету бросают четыре раза. Найдите вероятность того, что решка не выпадет ни разу.

Снова выписываем все возможные комбинации орлов и решек:

OOOO OOOP OOPO OOPP OPOO OPOP OPPO OPPP
POOO POOP POPO POPP PPOO PPOP PPPO PPPP

Всего получилось n = 16 вариантов. Вроде, ничего не забыл. Из этих вариантов нас устраивает лишь комбинация «OOOO», в которой вообще нет решек. Следовательно, k = 1. Осталось найти вероятность:

Как видите, в последней задаче пришлось выписывать 16 вариантов. Вы уверены, что сможете выписать их без единой ошибки? Лично я - не уверен. Поэтому давайте рассмотрим второй способ решения.

Специальная формула вероятности

Итак, в задачах с монетами есть собственная формула вероятности. Она настолько простая и важная, что я решил оформить ее в виде теоремы. Взгляните:

Теорема. Пусть монету бросают n раз. Тогда вероятность того, что орел выпадет ровно k раз, можно найти по формуле:

Где C n k - число сочетаний из n элементов по k , которое считается по формуле:

Таким образом, для решения задачи с монетами нужны два числа: число бросков и число орлов. Чаще всего эти числа даны прямо в тексте задачи. Более того, не имеет значения, что именно считать: решки или орлы. Ответ получится один и тот же.

На первый взгляд, теорема кажется слишком громоздкой. Но стоит чуть-чуть потренироваться - и вам уже не захочется возвращаться к стандартному алгоритму, описанному выше.

Задача. Монету бросают четыре раза. Найдите вероятность того, что орел выпадет ровно три раза.

По условию задачи, всего бросков было n = 4. Требуемое число орлов: k = 3. Подставляем n и k в формулу:

Задача. Монету бросают три раза. Найдите вероятность того, что решка не выпадет ни разу.

Снова выписываем числа n и k . Поскольку монету бросают 3 раза, n = 3. А поскольку решек быть не должно, k = 0. Осталось подставить числа n и k в формулу:

Напомню, что 0! = 1 по определению. Поэтому C 3 0 = 1.

Задача. В случайном эксперименте симметричную монету бросают 4 раза. Найдите вероятность того, что орел выпадет больше раз, чем решка.

Чтобы орлов было больше, чем решек, они должны выпасть либо 3 раза (тогда решек будет 1), либо 4 (тогда решек вообще не будет). Найдем вероятность каждого из этих событий.

Пусть p 1 - вероятность того, что орел выпадет 3 раза. Тогда n = 4, k = 3. Имеем:

Теперь найдем p 2 - вероятность того, что орел выпадет все 4 раза. В этом случае n = 4, k = 4. Имеем:

Чтобы получить ответ, осталось сложить вероятности p 1 и p 2 . Помните: складывать вероятности можно только для взаимоисключающих событий. Имеем:

p = p 1 + p 2 = 0,25 + 0,0625 = 0,3125

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Решение задач по теории вероятностей. Учитель математики МБОУ Нивнянская СОШ, Нечаева Тамара Ивановна

2 слайд

Описание слайда:

Цели урока: рассмотреть разные виды задач по теории вероятностей и методы их решения. Задачи урока: обучить распознавать различные разновидности задач по теории вероятностей и совершенствовать логическое мышление школьников.

3 слайд

Описание слайда:

Задача 1.В случайном эксперименте симметричную монету бросают 2 раза. Найдите вероятность того, что орлов и решек выпадет одинаковое количество.

4 слайд

Описание слайда:

Задача 2.Монету бросают четыре раза. Найдите вероятность того, что решка не выпадет ни разу.

5 слайд

Описание слайда:

Задача 3.В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз. Решение: Для того чтобы найти вероятность указанного события, необходимо рассмотреть все возможные исходы эксперимента, а затем из них выбрать благоприятные исходы (благоприятные исходы – это исходы удовлетворяющие требованиям задачи). В нашем случае, благоприятными будут те исходы, в которых при двух бросаниях симметричной монеты, орел выпадет только один раз. Вероятность события вычисляется как отношение количества благоприятных исходов к общему количеству исходов. Следовательно, вероятность того, что при двух кратном бросании симметричной монеты орел выпадет только один раз, равна: Р=2/4=0,5=50% Ответ: вероятность того, что в результате проведения вышеописанного эксперимента орел выпадет только один раз равна 50%. Номер эксперимента 1-ый бросок 2-ой бросок Сколько раз выпал орел 1 Орел Орел 2 2 Решка Решка 0 3 Орел Решка 1 4 Решка Орел 1

6 слайд

Описание слайда:

Задача 4. Игральный кубик бросили один раз. Какова вероятность того, что выпало число очков, большее чем 4. Решение: Случайный эксперимент – бросание кубика. Элементарное событие – число на выпавшей грани. Ответ:1/3 Всего граней: 1, 2, 3, 4, 5, 6 Элементарные события: N=6 N(A)=2

7 слайд

Описание слайда:

Задача 5. Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два раза промахнулся. Результат округлите до сотых. Решение: Вероятность попадания = 0,8 Вероятность промаха = 1 - 0,8 = 0,2 А={попал, попал, попал, промахнулся, промахнулся} По формуле умножения вероятностей Р(А)= 0,8 ∙ 0,8 ∙ 0,8 ∙ 0,2 ∙ 0,2 Р(А)= 0,512 ∙ 0,04 = 0,02048 ≈ 0,02 Ответ: 0,02

8 слайд

Описание слайда:

Задача 6.В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что сумма выпавших очков равна 6. Ответ округлите до сотых Решение: Элементарный исход в этом опыте – упорядоченная пара чисел. Первое число выпадет на первом кубике, второе – на втором. Множество элементарных исходов удобно представить таблицей. Строки соответствуют количеству очков на первом кубике, столбцы –на втором кубике. Всего элементарных событий п = 36. Напишем в каждой клетке сумму выпавших очков и закрасим клетки, где сумма равна 6. Таких ячеек 5. Значит, событию А = {сумма выпавших очков равна 6} благоприятствует 5 элементарных исходов. Следовательно, т = 5. Поэтому, Р(А) = 5/36 = 0,14. Ответ: 0,14. 2 3 4 5 6 7 3 4 5 6 7 8 4 5 6 7 8 9 5 6 7 8 9 10 6 7 8 9 10 11 7 8 9 10 11 12

9 слайд

Описание слайда:

Формула вероятности Теорема Пусть монету бросают n раз. Тогда вероятность того, что орел выпадет ровно k раз, можно найти по формуле: Где Cnk - число сочетаний из n элементов по k, которое считается по формуле:

10 слайд

Описание слайда:

Задача 7. Монету бросают четыре раза. Найдите вероятность того, что орел выпадет ровно три раза. Решение По условию задачи, всего бросков было n =4. Требуемое число орлов: k =3. Подставляем n и k в формулу: С тем же успехом можно считать число решек: k = 4 − 3 = 1. Ответ будет таким же. Ответ: 0,25

11 слайд

Описание слайда:

Задача 8. Монету бросают три раза. Найдите вероятность того, что решка не выпадет ни разу. Решение Снова выписываем числа n и k. Поскольку монету бросают 3 раза, n = 3. А поскольку решек быть не должно, k = 0. Осталось подставить числа n и k в формулу: Напомню, что 0! = 1 по определению. Поэтому C30 = 1. Ответ: 0,125

12 слайд

Описание слайда:

Задача 9.В случайном эксперименте симметричную монету бросают 4 раза. Найдите вероятность того, что орел выпадет больше раз, чем решка. Решение: Чтобы орлов было больше, чем решек, они должны выпасть либо 3 раза (тогда решек будет 1), либо 4 (тогда решек вообще не будет). Найдем вероятность каждого из этих событий. Пусть p1 - вероятность того, что орел выпадет 3 раза. Тогда n = 4, k = 3. Имеем: Теперь найдем p2 - вероятность того, что орел выпадет все 4 раза. В этом случае n = 4, k = 4. Имеем: Чтобы получить ответ, осталось сложить вероятности p1 и p2. Помните: складывать вероятности можно только для взаимоисключающих событий. Имеем: p = p1 + p2 = 0,25 + 0,0625 = 0,3125 Ответ: 0,3125

13 слайд

Описание слайда:

Задача 10.Перед на­ча­лом во­лей­боль­но­го матча ка­пи­та­ны ко­манд тянут чест­ный жре­бий, чтобы опре­де­лить, какая из ко­манд начнёт игру с мячом. Ко­ман­да «Ста­тор» по оче­ре­ди иг­ра­ет с ко­ман­да­ми «Ротор», «Мотор» и «Стар­тер». Най­ди­те ве­ро­ят­ность того, что «Ста­тор» будет на­чи­нать толь­ко первую и по­след­нюю игры. Ре­ше­ние. Тре­бу­ет­ся найти ве­ро­ят­ность про­из­ве­де­ния трех со­бы­тий: «Ста­тор» на­чи­на­ет первую игру, не на­чи­на­ет вто­рую игру, на­чи­на­ет тре­тью игру. Ве­ро­ят­ность про­из­ве­де­ния не­за­ви­си­мых со­бы­тий равна про­из­ве­де­нию ве­ро­ят­но­стей этих со­бы­тий. Ве­ро­ят­ность каж­до­го из них равна 0,5, от­ку­да на­хо­ дим: 0,5·0,5·0,5 = 0,125. Ответ: 0,125.