Эталон единицы массы (килограмм). Эталон массы Где находится эталон веса

В 1872 г. решением Международной комиссии по эталонам метрической системы за единицу массы была принята масса прототипа килограмма, хранящегося в Национальном архиве Франции. Этот прототип представляет собой платиновую цилиндрическую гирю высотой и диаметром 39 мм. Прототипы килограмма для практического использования были изготовлены из платиноиридиевого сплава. За международный прототип килограмма была принята платиноиридиевая гиря, наиболее близкая к массе платинового килограмма Архива. Следует отметить, что масса международного прототипа килограмма несколько отличается от массы кубического дециметра воды. В результате объем 1 литра воды и 1 кубического дециметра не равны друг другу (1л = 1,000028 дм 3). В 1964 г. XII Генеральная конференция по мерам и весам решила приравнять 1 л к 1 дм 3 .

Международный протопит килограмма был утвержден на I Генеральной конференции по метрам и весам в 1889 г. как прототип единицы массы, хотя в тот период еще не существовало четкого разграничения понятий массы и веса и поэтому часто эталон массы называли эталоном веса.

По решению I Конференции по мерам и весам из 42 изготовленных прототипов килограмма России были переданы платиноиридиевые прототипы килограмма № 12 и № 26. прототип килограмма № 12 был утвержден в 1899 г. в качестве государственного эталона массы факультативно (фунт должен был периодически сличаться с килограммом), а прототип № 26 использоваться в качестве вторичного эталона.

В состав эталона входят:

копия международного прототипа килограмма (№12), представляющая собой платиноиридиевую гирю в виде прямого цилиндра с закругленными ребрами диаметром и высотой 39 мм. Прототип килограмма храниться в ВНИИМ им. Д. М. Менделеева (г. Санкт-Петербург) на кварцевой подставке под двумя стеклянными колпаками в стальном сейфе. Эталон храниться при поддержание температуры воздуха в пределах (20 ±3) ° С и относительной влажности 65%. С целью сохранения эталона с ним сличают два вторичных эталона раз в 10 лет. Они и используются для дальнейшей передачи размера килограмма. При сличении с международным эталоном килограмма отечественной платиноиридиевой гире приписано значение 1,0000000877 кг;

равноплечие призменные весы на 1 кг. № 1 с дистанционным управлением (с целью исключения влияния оператора на температуру окружающей среды), изготовленные фирмой «Рупрехт», и равноплечие современные призменные весы на 1 кг №2, изготовленные во ВНИИМ им. Д.М. Менделеева. Весы № 1 и № 2 служат для передачи размера единицы массы от прототипа № 12 вторичным эталонам.

Погрешность воспроизведения килограмма, выраженная средним квадратическим отклонением результата измерений 2 . 10 -9 . Удивительная долговечность эталона единицы массы в виде платиноиридиевой гире не связана с тем, что в свое время был найден наименее уязвимый способ воспроизведения килограмма. Отнюдь нет. Уже несколько десятилетий тому назад требования к точности измерений массы превзошли возможности их реализации с помощью действующий эталонов единицы массы. Длительное время продолжаются исследования по воспроизведению массы с помощью известных фундаментальных физических констант масс различных атомных частиц (протон, электрон, нейтрон и др.). Однако реальная погрешность воспроизведения больших масс (например, килограмма), привязанных, в частности, к массе покоя нейтрона, пока что существенно больше, чем погрешность воспроизведения килограмма с помощью платиноиридиевой гире. Масса покоя единичной частицы - нейрона составляет 1,6949286 (10)х10 -27 кг и определяется со средним квадратическим отклонением 0,59 . 10 -6 .

Со времени создания прототипов килограмма прошло более 100 лет. За истекший период периодически сличали национальные эталоны с международным эталоном. В Японии созданы специальные весы с применением лазерного луча для регистрации «раскачки» коромысла с эталонной и тарируемой гирями. Обработка результатов ведется с помощью ЭВМ. При этом погрешность воспроизведения килограмма удалось повысить примерно до 10 -10 (по СКО).один комплект подобных весов имеется в Метрологической службе Вооруженных Сил РФ.

Килогра́мм (обозначение: кг, kg) - единица измерения массы, одна из основных единиц СИ [система единиц/измерений].

На данный момент килограмм - единственная единица СИ, которая определена при помощи предмета, изготовленного людьми. Все остальные единицы теперь определяются с помощью фундаментальных физических свойств и законов.

Эталон был изготовлен в 1889 г. и с тех пор хранится в Международном бюро мер и весов * (расположено в г. Севр близ Парижа) и представляет собой цилиндр диаметром и высотой 39.17 мм из платино-иридиевого сплава (90% платины, 10% иридия). Хранится он под тремя герметичными стеклянными колпаками. Первоначально килограмм определялся как масса одного кубического дециметра (литра) чистой воды при температуре 4°C и стандартном атмосферном давлении на уровне моря.
Были изготовлены также точные официальные копии международного эталона, которые используются как национальные эталоны килограмма. Всего было создано более 80 копий. Копии международного эталона хранятся также и в Российской Федерации, во ВНИИ метрологии им. Менделеева . Примерно раз в 10 лет национальные эталоны сравниваются с международным. Эти сравнения показывают, что точность национальных эталонов составляет примерно 2 мкг. Так как они хранятся в тех же условиях, нет никаких оснований считать, что международный эталон точнее. По разным причинам за сто лет международный эталон теряет 3х10 −8 своей массы. Однако, по определению, масса международного эталона в точности равна одному килограмму. Поэтому любые изменения действительной массы эталона приводят к изменению величины килограмма.

Для устранения этих неточностей в настоящее время рассматриваются различные варианты переопределения килограмма на основе фундаментальных физических законов.

Также с 2003 года международная группа исследователей из 8 стран, в том числе из Германии, Австралии, Италии и Японии, под эгидой Немецкой лаборатории стандартов (German standards laboratory) ведет работы по переопределению килограмма как массы определённого числа атомов изотопа кремния-28. Второй проект, под названием «Электронный килограмм» начат в 2005 г. в (NIST). Руководитель данного проекта Ричард Стайнер утверждает, что над созданием «электронного килограмма» он работает более десяти лет. Учёные под руководством доктора Стайнера создали прибор, который измеряет мощность, необходимую для генерации электромагнитного поля, с помощью которого можно поднять один килограмм массы. С его помощью учёным удалось определить массу в один килограмм с точностью до 99,999995 %, пишут на Википедии .

Ученые приближаются к нефизическому описанию килограмма после открытия того, что металлический эталон, используемый в качестве международного стандарта начал по непонятным причинам терять вес.

Исследователи говорят, что им еще предстоит пройти определенный путь, прежде чем определение будет дано, но в случае успеха это привело бы к принятию нового международного стандарта, используемого для определения килограмма.

Ученые говорят, что именно описание килограмма столь важно, так как он является основной физической единицей весов, от которой все остальные уже вычисляются как производные. Сейчас эквивалент килограмма - это металлический брусок, весом около 2,2 британских фунтов [...] .

Однако в 2007 году было установлено, что эталон начал терять вес, в частности ученые определили, что килограммовый брусок стал весить на 50 микрограмм меньше, нескольких десятков точных копий. То есть, можно сказать, что эталон потерял вес, сопоставимый с весом песчинки. В связи с этим, физики предполагают, что брусок может и дальше терять свой вес.

Кроме того, ученые говорят, что другие основополагающие единицы, такие как ампер, вольт, моль, метр и другие не привязаны к каким-либо физическим ссылкам.

Ранее немецкие специалисты из Национального института метрологии в Брауншвейге сообщили, что будут использовать новую 10-сантиметровую кремниевую сферу в качестве эталона килограмма. По мнению ученых, новый эталон более точен и стабилен, нежели используемый сейчас.

Цель нового проекта заключается в создании более надежного эталона, точность которого измеряется на атомном уровне. Ученые говорят, что атомы кремния для этого проекта подходят идеально, так как они очень стабильны, а их соединения почти не разрушаются в стандартных условиях.

Примечательно, что частично новый кремниевый эталон килограмма был разработан в России. Также в проекте приняли участие ученые из Австралии и Японии. Всего на изготовление кремниевой сферы беспрецедентной точности было потрачено 2 миллиона евро, а процесс ее создания занял чуть меньше 5 лет.

По словам Петера Бекера, руководителя проекта, для создания килограммового эталона физики рассчитали сколько атомов кремния должно находиться в 1 килограмме этого элемента, после чего приступили к «сборке» эталона. Однако Бекер подчеркивает, что и новая сфера не является идеально точной, так как сегодняшняя наука не способна сложить макрообъект в буквальном смысле слова, собирая его по атомам, пишет ZN.UA по материалам CyberSecurity .

* Справка: Что такое Международное бюро мер и весов?

Учреждено в 1875 г., вместе с подписанием Метрической конвенции . Основная задача Бюро заключается в обеспечении существования единой системы измерений во всех странах-участницах этой конвенции.

В МБМВ хранятся международные эталоны основных единиц и выполняются международные метрологические работы, связанные с разработкой и хранением международных эталонов и сличением национальных эталонов с международными и между собой.

В МБМВ также проводятся исследования в области метрологии, направленные на увеличение точности измерений.

В разные годы бюро возглавляли известные европейские ученые: G. Govi (Италия, 1875-1877) , J. Pernet (Швейцария, 1877-1879) , O.-J. Broch (Норвегия, 1879-1889) , J.-R. Benoit (Франция, 1889-1915) , C.-E. Guillaume (Швейцария, 1915-1936) , A. Perard (Франция, 1936-1951) , C. Volet (Швейцария, 1951-1961) , J. Terrien (Франция, 1962-1977) , P. Giacomo (Франция, 1978-1988) , T. J. Quinn(Великобритания, 1988-2003) .

С 2004 года по настоящий момент директором МБМВ является профессор Эндрю Уоллард (A. J. Wallard ), Великобритания. Бюро финансируется странами-участницами Метрической конвенции.

Существует также Главная палата мер и весов , которая была учреждена в 1893 году в Санкт-Петербурге по инициативе Д. И. Менделеева, учёного-хранителя Депо образцовых мер и весов , которое и было преобразовано в Главную палату.

Главная палата мер и весов являлась центральным учреждением Министерства финансов, заведовавшим поверочной частью в Российской империи и подчиненным отделу торговли.

По Положению о мерах и весах 1899 задачей Палаты являлось «сохранение единообразия, верности и взаимного соответствия мер и весов»; по закону 1901 на нее было возложено заведование местными поверочными палатками, временными их отделениями, распределение по тем и другим состоявших при Палате поверителям, командирование их и др., а также решение различных вопросов по метрологии и ведение отчетности по поступлению в казну сборов за клеймение мер и весов. В самой Палате устройство поверочного дела было доведено до возможного научно-технического совершенства.

Сегодня ВНИИМ является одним из крупнейших мировых центров научной и практической метрологии, головной организацией страны по фундаментальным исследованиям в метрологии и главным центром государственных эталонов России. Подчинен Федеральному агентству по техническому регулированию и метрологии.

В июле 1994 года Постановлением Правительства РФ ВНИИМ присвоен статус Государственного научного центра РФ. Как Государственный научный центр РФ ВНИИМ подчинен Министерству образования и науки России и входит в Ассоциацию государственных научных центров, пишут на Википедии .

Определение единицы массы - килограмма - было дано III Генеральной конференцией по мерам и весам 1901 г. в следующем виде:

"Килограмм - единица массы - представлен массой международного прототипа килограмма".

При установлении метрической системы мер в качестве единицы массы была принята масса 1 кг, равная массе 1 дм 3 чистой воды при температуре ее наибольшей плотности (4 o С).

В этот период были проведены точные измерения массы известного объема воды путем последовательного взвешивания в воздухе и воде пустого бронзового цилиндра, размеры которого были тщательно определены.

Изготовленный на основе этих взвешиваний первый прототип килограмма представлял собой платиновую цилиндрическую гирю высотой 39 мм, равной его диаметру. Он был передан на хранение в Национальный Архив Франции.

В XIX в. было произведено повторное тщательное измерение массы 1 дм 3 воды, при этом было установлено, что эта масса немного (приблизительно на 0,28 г) меньше массы прототипа Архива.

Для того, чтобы при дальнейших, более точных взвешиваниях, не менять значения единицы массы, Международной комиссией по эталонам метрической системы в 1872 г. было решено за единицу массы принять массу прототипа килограмма Архива.

В 1883 г. были изготовлены 42 прототипа килограмма из платино-иридиевого сплава (90% платины и 10% иридия) фирмой Джонсон, Маттей и К° и копии №12 и №26 получены по жребию Россией в 1889 г. согласно Метрической конвенции. Эталон хранится на кварцевой подставке под двумя стеклянными колпаками в стальном шкафу особого сейфа, находящегося в термостатированном помещении ГП “ВНИИМ им. Д.И.Менделеева”, г. С.-Петербург.

В состав государственного первичного эталона единицы массы кроме гири входят эталонные весы номер 1 (Рупрехта) и номер 2 (ВНИИМ) на 1кг с дистанционным управлением, служащие для передачи размера единицы массы от прототипа номер 12 эталонам-копиям и от эталонов-копий рабочим эталонам (2 эталонам 1 раз в 10 лет).

Погрешность воспроизведения массы эталоном килограмма не превышает 2·10 -9 . Таким образом, эталон килограмма позволяет записывать результат измерения массы в лучшем случае числом из девяти цифр. Несмотря на все предосторожности, как показывают результаты международных сличений, за 90 лет масса эталонной гири увеличилась на 0,02 мг. Объясняется это адсорбцией молекул из окружающей среды, оседанием пыли на поверхность гири и образованием тонкой коррозионной пленки.

В связи с развитием работ по созданию новых эталонов единиц ФВ, основанных на атомных постоянных, предлагается использование в качестве эталона массы нейтрона. Другое предложение основано на воспроизведении единицы массы через счетное число атомов какого-нибудь химического элемента, например изотопа кремния-28. Для этого необходимо повысить точность определения числа Авогадро, на что сейчас направлены усилия многих лабораторий мира.


Похожая информация:

  1. Lt;question>Средство измерения, предназначенное для воспроизведения или хранения единицы величины
  2. V1: Характеристика измеряемых величин, единицы измерений и погрешности измерений
  3. А. В килограммах. Б. В граммах. В. В атомных единицах массы (а. е. м.). Г. В МэВ
  4. А. Одинаковы. Б. Масса дроби немного больше массы разновеса. В. Масса дроби немного меньше массы разновеса. Г. Этот опыт не дает оснований для ответа на заданный вопрос

Эталон массы

Это - килограммовая гиря из платиноиридиевого сплава, определенной формы, хранящаяся под двойным колпаком и так далее. Гирь таких было изготовлено несколько, их раз в сколько-то лет свозят в Париж и так далее, см. выше рассуждение насчет того, что такое точность эталона. Естественен вопрос, почему не взять естественный эталон - атом. Вот уж у кого по всем современным воззрениям с постоянством массы дело обстоит хорошо. Ответ прост - потому что атом маленький, а отсчитать число Авогадро атомов - замучаешься. Степень у десяти такая большая, что даже фуллерен из урана не спас бы дела. Но перейти на естественный псевдоатомный эталон хочется. Поэтому ведутся работы по созданию эталона массы на основе эталона метра и атомных свойств (то есть в итоге это все-таки атомный эталон). А именно, предполагается, что это будет шар точно известного размера из моноизотопного кремния. Шар - чтобы избежать неопределенности, связанной с истинной геометрией ребер, кремний - поскольку для него разработаны технологии очистки. У кремния три стабильных изотопа, что затрудняет получение точных копий эталона, но зато для кремния разработаны методы очистки от примесей, а изотопно-чистый кремний представляет, как пишут, свой интерес для полупроводниковой техники и технология его изготовления существует.

Из книги Баллистическая теория Ритца и картина мироздания автора Семиков Сергей Александрович

§ 1.15 Релятивистский эффект изменения массы Эксперименты Кауфмана одинаково хорошо объясняются как посредством допущения абсолютного движения с изменяющейся массой, так и посредством рассмотрения массы как постоянной, а движений как относительных. Также они вполне

Из книги Записки строителя автора Комаровский Александр Николаевич

§ 1.16 Аннигиляция и эквивалентность массы и энергии Тело вещей до тех пор нерушимо, пока не столкнётся С силой, которая их сочетанье способна разрушить. Так что, мы видим, отнюдь не в ничто превращаются вещи, Но разлагаются все на тела основные обратно… ….Словом, не

Из книги Очень общая метрология автора Ашкинази Леонид Александрович

§ 1.17 Природа массы и гравитации Объяснение Цёлльнера, принятое Лоренцем, состоит, как известно, в том, что сила притяжения двух электрических зарядов противоположного знака немного превосходит силу отталкивания двух зарядов одного знака и той же абсолютной величины.

Из книги автора

§ 3.13 Ядерные реакции и дефект массы Все перемены в натуре случающиеся такого суть состояния, что сколько чего от одного тела отнимается, столько присовокупится к другому. Так, ежели где убудет несколько материи, то умножится в другом месте… Сей всеобщий естественной

Из книги автора

Приложение № 3 ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ИЗДЕЛИЙ ИЗ БУМАЖНОЙ МАССЫ Для приготовления 1 кг бумажной массы (мастики) берется (в г):Мел молотый - 450Клей казеиновый марки ОБ - 200Олифа натуральная - 100Канифоль - 20Бумажная пыль (кноп) - 200Квасцы алюминиевые - 15Глицерин

Из книги автора

Эталон длины Сначала эталоны были естественные, например, эталоном длины был, возможно, пояс короля Карла такого-то. Потом король слегка разъелся и экономика сошла с ума. Поэтому взяли длину маятника с определенным периодом (привязав тем самым эталон длины к эталону

Из книги автора

Эталон времени В природе полно периодических процессов, поэтому с естественным эталоном времени проблем не было, правда лично я взял бы не вращение Земли, а периодическое возникновение желания пожрать. Потому что вращается Земля или нет - мы видим только днем, а кушать

Из книги автора

Эталон количества вещества Это моль, который в общем-то дублирует эталон массы, но сохраняется как понятие для удобства в основном химических вычислений. Отдельного эталона моля не существует. По определению, это такое количество вещества, которое содержит столько

Из книги автора

Эталон температуры В физике есть несколько разных «температур», высокая метрология знает одну - термодинамическую температуру. Это та самая, которя однозначно связана с энергией через постоянную Больцмана (поэтому физики часто измеряют температуру в единицах энергии

Из книги автора

Эталон тока Исторически эталонами электрических величин сначала были ток (через гальванопроцесс и вес осадка) и сопротивление (через сопротивление ртутного цилиндрика), напряжение определялось законом Ома, а передавалось - особо стабильным гальваническим элементом

Из книги автора

Эталон силы света Свет - это электромагнитное излучение в диапазоне непосредственного восприятия человеком. Поэтому в технике и, соответственно, метрологии, ему уделяется большее внимание. Световых единиц, как известно, четыре - световой поток, сила света, светимость и

Определение единицы массы - килограмма - было дано IIIГенеральной конференцией по мерам и весам 1901 г. в следующем виде:

"Килограмм - единица массы - представлен массой международного прототипа килограмма".

При установлении метрической системы мер в качестве единицы массы была принята масса 1 кг, равная массе 1 дм 3 чистой воды при температуре ее наибольшей плотности (4 o С).

В этот период были проведены точные измерения массы известного объема воды путем последовательного взвешивания в воздухе и воде пустого бронзового цилиндра, размеры которого были тщательно определены.

Изготовленный на основе этих взвешиваний первый прототип килограмма представлял собой платиновую цилиндрическую гирю высотой 39 мм, равной его диаметру. Он был передан на хранение в Национальный Архив Франции.

В XIX в. было произведено повторное тщательное измерение массы 1 дм 3 воды, при этом было установлено, что эта масса немного (приблизительно на 0,28 г) меньше массы прототипа Архива.

Для того, чтобы при дальнейших, более точных взвешиваниях, не менять значения единицы массы, Международной комиссией по эталонам метрической системы в 1872 г. было решено за единицу массы принять массу прототипа килограмма Архива.

В 1883 г. были изготовлены 42 прототипа килограмма из платино-иридиевого сплава (90% платины и 10% иридия) фирмой Джонсон, Маттей и К° и копии №12 и №26 получены по жребию Россией в 1889 г. согласно Метрической конвенции. Эталон хранится на кварцевой подставке под двумя стеклянными колпаками в стальном шкафу особого сейфа, находящегося в термостатированном помещении ГП “ВНИИМ им. Д.И.Менделеева”, г. С.-Петербург.

В состав государственного первичного эталона единицы массы кроме гири входят эталонные весы номер 1 (Рупрехта) и номер 2 (ВНИИМ) на 1кг с дистанционным управлением, служащие для передачи размера единицы массы от прототипа номер 12 эталонам-копиям и от эталонов-копий рабочим эталонам (2 эталонам 1 раз в 10 лет).

Погрешность воспроизведения массы эталоном килограмма не превышает 2·10 -9 . Таким образом, эталон килограмма позволяет записывать результат измерения массы в лучшем случае числом из девяти цифр. Несмотря на все предосторожности, как показывают результаты международных сличений, за 90 лет масса эталонной гири увеличилась на 0,02 мг. Объясняется это адсорбцией молекул из окружающей среды, оседанием пыли на поверхность гири и образованием тонкой коррозионной пленки.

В связи с развитием работ по созданию новых эталонов единиц ФВ, основанных на атомных постоянных, предлагается использование в качестве эталона массы нейтрона. Другое предложение основано на воспроизведении единицы массы через счетное число атомов какого-нибудь химического элемента, например изотопа кремния-28. Для этого необходимо повысить точность определения числа Авогадро, на что сейчас направлены усилия многих лабораторий мира.

1.3.3 Эталон единиц времени и частоты

Еще в древности счет времени основывался на периоде обращения Земли вокруг своей оси. До недавнего времени секунду определяли как 1/86400 часть средних солнечных суток (т. к. продолжительность суток в течение года изменяется). Позднее было обнаружено, что вращение Земли вокруг своей оси происходит неравномерно. Относительная погрешность определения единицы времени в соответствии с этим определением составляла около 10 -7 , что было недостаточно для метрологического обеспечения измерителей времени и частоты. Поэтому в основу определения единицы времени положили период вращения Земли вокруг Солнца - тропический год (т.е. интервал между двумя весенними равноденствиями). Размер секунды был определен как 1/31556925,9744 часть тропического года. Поскольку тропический год также изменяется (около 5 с за 1000 лет), то за основу был взят тропический год, отнесенный к 12 ч эфемеридного времени (равномерно текущее время, определяемое астрономическим путем) 0 января 1900 года, что соответствует 12 ч 31 декабря 1899 г. Это определение секунды было зафиксировано в Международной системе единиц 1960 г. Данное определение позволило на 3 порядка (в 1000 раз) снизить погрешность определения единицы времени.

Успехи квантовой физики позволили использовать частоту излучения или поглощения при энергетических переходах в атомах цезия и водорода для определения размера единицы времени. XIIIГенеральная конференция по мерам и весам в 1967 г, приняла новое определение единицы времени - секунды:“Секунда – это время, равное 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133”.

Выбор количества колебаний произведен таким образом, чтобы привязать “цезиевую”секунду к“тропической”.

В соответствии с определением единицы времени воспроизведение ее осуществляется цезиевым репером (рис. 1.4). Основой эталона является атомно-лучевая трубка. Атомы цезия-133 испускаются нагретым до температуры 100-150 0 С источником 1. Пучок этих атомов попадает в область неоднородного магнитного поля, создаваемого магнитом 2. Угол отклонения атомов в таком магнитном поле определяется их магнитным моментом. Поэтому неоднородное магнитное поле позволяет выделить из пучка атомы, находящиеся на определенном энергетическом уровне. Эти атомы направляются в объемный резонатор 3, пролетая через который взаимодействуют с переменным электромагнитным полем СВЧ. Частота электромагнитных колебаний может регулироваться в небольших пределах.

1 - источник атомов цезия-133; 2, 4 - магниты; 3 - резонатор; 5 – детектор

Рисунок 1.4 - Структурная схема цезиевого репера

При совпадении ее с частотой, соответствующей энергии квантовых переходов, происходит поглощение энергии СВЧ-поля и атомы переходят в основное состояние. Отклоняющей магнитной системой 4 они направляются в детектор 5. Ток детектора при настройке резонатора на частоту квантовых переходов оказывается максимальным. Это служит основой стабилизации частоты в цезиевом репере, в котором электромагнитные колебания кварцевого генератора умножаются до частоты спектральной линии цезия, принятой за рабочую. В резонаторе атомно-лучевой трубки энергия высокочастотных колебаний поглощается атомами цезия.

При отклонении частоты кварцевого генератора (собственная нестабильность частоты равна 10 -8 от номинального значения) интенсивность переходов атомов и, следовательно, плотность атомного пучка на выходе трубки резко сокращается.

Блок автоподстройки, связанный с трубкой, вырабатывает сигнал ошибки, возвращающий частоту кварцевого генератора к номинальному значению. Стабильность цезиевого репера составляет 10 13 . Делитель частоты, находящийся в кварцевых часах, позволяет получить на их выходе требуемые частоты и временные интервалы (в том числе и частоту 1 Гц).

Долговременная стабильность цезиевого репера частоты невелика. Поэтому для хранения единиц времени и частоты в состав государственного первичного эталона входит водородный мазер (рис. 1.5).

1 - стеклянная трубка; 2 - коллиматор; 3 - шестиполюсной осевой магнит; 4 - накопительная ячейка; 5 - резонатор; 6 - многослойный экран

Рисунок 1.5 - Мазер на атомарном водороде

В стеклянной трубке 1 под действием высокочастотного электрического разряда происходит диссоциация молекул водорода. Пучок атомов водорода через коллиматор 2, обеспечивающий его направленность, попадает в неоднородное магнитное поле шестиполюсного осевого магнита 3, где претерпевает пространственную сортировку. В результате последней на вход накопительной ячейки 4, расположенной в объемном резонаторе 5, попадают лишь атомы водорода, находящиеся на верхнем энергетическом уровне. Находящийся внутри многослойного экрана 6 высокодобротный резонатор настроен на частоту используемого квантового перехода. Взаимодействие возбужденных атомов с высокочастотным полем резонатора (в течение примерно 1 с) приводит к их переходу на нижний энергетический уровень с одновременным излучением квантов энергии на резонансной частоте 1420405751,8 Гц. Это вызывает самовозбуждение генератора, частота которого отличается высокой стабильностью (510 -14). Значение этой частоты периодически поверяется по цезиевому реперу.

Наряду с водородным мазером для хранения шкал времени в состав государственного первичного эталона единиц времени и частоты и шкал времени входит группа квантово-механических часов. Общий диапазон временных интервалов, воспроизводимых эталоном, составляет 10 -8 10 8 с. Эталон расположен в ГП ВНИИФТРИ г. Москва.